Министерство науки и высшего образования РФ Федеральное государственное автономное образовательное учреждение высшего образования

«СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.В.04 Физи	ические основы космической навигации	
наименование дис	сциплины (модуля) в соответствии с учебным планом	
Направление подготовки	и / специальность	
таправление подготовки		
	03.04.02 Физика	
Направленность (профи.	ль)	
03.0	04.02.04 Физика Земли и планет	
Форма обучения	очная	
Год набора	2022	

РАБОЧАЯ ПРОГРАММА ЛИСШИПЛИНЫ (МОЛУЛЯ)

Программу составили						
к.т.н., до	оцент, Рублева Татьяна Васильевна					
	попуность инишизант фэмициа					

1 Цели и задачи изучения дисциплины

1.1 Цель преподавания дисциплины

Целью преподавания дисциплины «Физические основы космической навигации» является: формирование теоретических и специализированных знаний, используемых для описания движения космических аппаратов; выработка умений анализа физических условий околоземного космического пространства, в которых происходит движение спутников.

1.2 Задачи изучения дисциплины

- 1. Сформировать теоретические и специализированные знания, используемые для описания движения космических аппаратов.
- 2. Провести анализ воздействующих на спутник физических факторов, которые приводят к изменению его орбитального движения.
- 3. Ознакомиться с современными методами и средствами космической навигации, реализуемыми при исследовании Земли и планет.

1.3 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Код и наименование индикатора достижения компетенции	Запланированные результаты обучения по дисциплине
ПК-1: Способен выполнять за	дачи по созданию тематических,
информационных продуктов в	и современных методик при исследовании Земли
из космоса	
ПК-1.2: Выполняет комплекс	Теоретические основы движения космических
операций по созданию	аппаратов
тематических и	Структуру околоземного и межпланетного
информационных продуктов,	космического пространства
использующих	Орбитальные параметры космических аппаратов
экспериментальные данные	Использовать основные методы астрономических
	исследований и космической навигации для решения
	научных и прикладных задач
	Использовать вычислительные методы и
	моделирования в данной предметной области
	Использовать экспериментальные данные о
	параметрах спутников
	Сведениями о физических условиях околоземного
	космического пространства, где происходит
	движение космических аппаратов
	Навыками и умениями использования современных
	методик по расчету орбитальных параметров
	Способностью выполнения задач по созданию
	тематических, информационных продуктов

интерпретации спутниковой информации при решении научных и прикладных

задач

ПК-2.1: Обосновывает перспективы проведения исследований, в том числе комплексных, в области наук о Земле

Космические системы, используемые при решении задач ДЗЗ

Основные параметры и законы, характеризующие орбитальное движение

Современные методы, используемые при анализе движения космических аппаратов

Ориентироваться в практически значимых новых направлениях развития средств космической навигации

Обобщать и интерпретировать результаты тематических исследований по данным ДЗЗ

Применять методы математического моделирования, анализа случайных процессов и цифровой визуализации к спутниковым данным

Навыками работы со спутниковой информацией из различных источников: отечественной и зарубежной научной литературы, электронных ресурсов Интернет

Методиками выполнения экспериментальных расчетов

Навыками и умениями интерпретации спутниковой информации при решении научных и прикладных задач

1.4 Особенности реализации дисциплины

Язык реализации дисциплины: Русский.

Дисциплина (модуль) реализуется без применения ЭО и ДОТ.

2. Объем дисциплины (модуля)

		e
Вид учебной работы	Всего, зачетных единиц (акад.час)	1
Контактная работа с преподавателем:	1,11 (40)	
занятия лекционного типа	0,67 (24)	
практические занятия	0,44 (16)	
Самостоятельная работа обучающихся:	1,89 (68)	
курсовое проектирование (КП)	Нет	
курсовая работа (КР)	Да	

3 Содержание дисциплины (модуля)

3.1 Разделы дисциплины и виды занятий (тематический план занятий)

		Контактная работа, ак. час.							
№ п/п	Модули, темы (разделы) дисциплины	Занятия лекционного типа		Занятия семина Семинары и/или Практические занятия		нарского типа Лабораторные работы и/или Практикумы		Самосто работа,	ятельная ак. час.
		Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС
1.00	сновы небесной механики	_							
	1. Астрономические ориентиры — навигационные созвездия и звезды. Объекты Солнечной системы. Межпланетное и околоземное космическое пространство. Характеристика космофизических факторов, воздействующих на Землю.	4							
	2. Референц-эллипсоид. Сжатие эллипсоида. Параметры нормальной Земли. Поле силы тяжести. Гравитационный потенциал. Модель гравитационного поля Земли EGM96.	4							
	3. Инерциальная, гринвичская, орбитальная, топоцентрическая, географическая и динамическая системы.	2							

4. Элементы орбиты КА Определение параметров							
невозмущенной орбиты через элементы орбиты. Типы невозмущенного движения. Возмущающие факторы движения.	2						
5. Координатные системы WGS84, ПЗ 90. Алгоритмы преобразования координат. Международные системы небесных (ICRS) и земных (ITRS) координат.			2				
6. Системы счета времени			2				
7. Уравнение Кеплера. Интеграл энергии. Интеграл площадей. Интеграл Лапласа.			2				
8. Возмущения, связанные с нецентральностью поля тяготения Земли. Влияние сопротивления воздуха. Возмущения, вызванные притяжением Солнца и Луны. Возмущающее влияние планет. Давление солнечного света как возмущающий фактор движения КА.			2				
2. Введение в теорию спутниковой навигации	•	•	•	•	•	•	•
1. Силы и моменты, действующие на космический аппарат. Основные параметры и законы, характеризующие возмущенное движение. Метод оскулирующих элементов. Уравнения движения.	4						
2. Классификация орбит спутников. Траектория движения. Метод определения орбиты по измерениям наклонной дальности и скорости изменения дальности. Методы определения вектора состояния космического аппарата по измерениям текущих навигационных параметров.	4						
3. Движение космических аппаратов. Эволюция орбит под действием внешних тел. Классификация способов коррекции орбит.	2						

4. Методы, используемые при прогнозировании движения космических аппаратов. Прогноз орбитального движения КА.	2				
5. Оценка оскулирующих элементов.		2			
6. Метод определения орбиты по измерениям наклонной дальности и скорости изменения дальности.		2			
7. Методы определения вектора состояния космического аппарата по измерениям текущих навигационных параметров		2			
8. Изменение орбит и способы их коррекции		2			
9. Самостоятельное изучение				44	
10. курсовое проектирование				24	
Всего	24	16		68	

4 Учебно-методическое обеспечение дисциплины

4.1 Печатные и электронные издания:

- 1. Одуан К., Гино Б., Домнин Ю. С., Татаренков В.М. Измерение времени. Основы GPS(Москва: Техносфера).
- 2. Егорычева З. В. Инженерная геодезия: учеб. пособие(Красноярск: ИПК СФУ).
- 3. Бакулин П. И., Кононович Э. В., Мороз В. И. Курс общей астрономии: учебник для вузов по специальности "Астрономия" (Москва: Наука, Гл. ред. физ.-мат. лит.).
- 4. Иванов К.М., Лысенко Л.Н. Баллистика и навигация космических аппаратов(Москва: Дрофа).
- 5. Дубошин Г. Н. Небесная механика. Аналитические и качественные методы: учебное пособие для университетов(Москва: Наука. Главная редакция физико-математической литературы [Физматлит]).
- 6. Маркеев А. П. Теоретическая механика: учебное пособие для механикоматематических специальностей университетов(Москва: Наука, Гл. ред. физ.-мат. лит.).
- 7. Кантор Л.Я., Тимофеев В.В. Спутниковая связь и проблема геостационарной орбиты (Москва: Радио и связь).
- 8. Соловьев Ю.А. Системы спутниковой навигации: материал технической информации(Москва: ЭКО-ТРЕНДЗ).
- 9. Карлащук В. И., Карлащук С. В. Спутниковая навигация. Методы и средства(Москва: СОЛОН-Пресс).
- 10. Корецкая Г. А. Спутниковые навигационные системы в маркшейдерии: учебное пособие для вузов(Кемерово: КузГТУ).
- 11. Границкий Л. В., Кашкина Л. В., Кашкин В. Б., Никифорова Г. Г., Рублева Т. В., Симонов К. В., Сухинин А.И. Астрономия и навигация: методические указания по самостоятельной работе(Красноярск: ИПК СФУ).
- 12. Борисевич А.Н., Границкий Л.В., Кашкина Л.В., Рублева Т.В. Астрономия и навигация: конспект лекций(Красноярск: ИПК СФУ).
- 4.2 Лицензионное и свободно распространяемое программное обеспечение, в том числе отечественного производства (программное обеспечение, на которое университет имеет лицензию, а также свободно распространяемое программное обеспечение):
- 1. Microsoft Windows,
- 2. Microsoft Office (Word, Excel, Power point),
- 3. Acrobat,
- 4. FineReader
 - 4.3 Интернет-ресурсы, включая профессиональные базы данных и информационные справочные системы:

- 1. Астронет. [Электронный ресурс]. Режим доступа: URL: http://www.astronet.ru/
- 2. Архив журнала Science. [Электронный ресурс]. Режим доступа: : URL: http://www.sciencemag.org/content/by/year#classic
- 3. Архив журнала Scopus. [Электронный ресурс]. Режим доступа: : URL: http://www.scopus.com/
- 4. Архив журнала Web of Science. [Электронный ресурс]. Режим доступа: URL: http://apps.webofknowledge.com/UA_GeneralSearch_input.do? product=UA&search_mode=Gener
- 5. Библиотека РАН по естественным наукам. [Электронный ресурс]. Режим доступа: URL: http://www.benran.ru
- 6. Доступ к библиотечному фонду СФУ, раздел «Библиотека» [Электронный ресурс]. Режим доступа: URL: http://bik.sfu-kras.ru/.
- 7. Научная электронная библиотека eLIBRARY.RU. [Электронный ресурс]. Режим доступа: URL: http://elibrary.ru.
- 8. Национальное управление по аэронавтике и исследованию космического пространства NASA. [Электронный ресурс]. Режим доступа: URL: https://www.nasa.gov/
- 9. Информационно-аналитический центр координатно-временного и навигационного обеспечения ФГУП ЦНИИмаш. [Электронный ресурс]. Режим доступа: URL: https://www.glonass-iac.ru/
- 10. Электронная естественно-научная библиотека. [Электронный ресурс]. Режим доступа: URL: http://bib.tiera.ru.
- 11. Google Академия. [Электронный ресурс]. Режим доступа: URL: https://scholar.google.ru

5 Фонд оценочных средств

Оценочные средства находятся в приложении к рабочим программам дисциплин.

6 Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю)

Microsoft Windows,

Microsoft Office (Word, Excel, Power point),

Acrobat,

FineReader